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Simultaneous Design of Active Vibration Control and Passive
Viscous Damping
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Structural engineers have found that passive damping can reduce the amount of active damping required to
control structural vibration. Conversely, improperly designed passive damping can inadvertently increase system
reaction times, reducing control effectiveness. This paper presents several techniques for blending active
vibration control and passive viscous damping. A closed-form optimal solution for minimizing a quadratic cost
functional is derived, but it is shown to be dependent on the initial conditions and produces time-varying
damping coefficients. To eliminate the dependence on initial conditions, solution techniques for suboptimal,
state independent solutions are developed. The suboptimal solutions require less computation effort, but still
give good estimates of the optimal solution. The advantages and disadvantages of the different solution
techniques are discussed with respect to computation requirements and robustness. Methods of comparing
competing designs are also discussed. Several numerical examples illustrate the similarities and differences of the
various techniques. More importantly, the examples demonstrate the significant improvements achievable by
simultaneously designing passive and active damping.

Introduction

T RADITIONAL methods of vibration suppression make
the structure as rigid as possible, approximate the resid-

ual damping as viscous, and then design an optimal controller
with respect to a predetermined cost function.1 Although the
controller effectively stabilizes modes at specific frequencies,
problems arise when the structure has modes at closely spaced
frequencies. This is typically the case with large space struc-
tures, which often have closely spaced, low resonant frequen-
cies. To stabilize the associated modes, passive dampers are
added.2 But this changes the whole system: How "optimum"
is the controller now? Is control effort still optimized? What is
the "best" size for the passive dampers? If one does not
design passive and active control elements simultaneously,
higher weight costs are likely, which is important for space
structures.

To overcome these problems, Mar encouraged viewing
damping as a creative force in design.3 Along these lines,
several recent research efforts have been aimed at designing a
damped structure, then designing a controller for it.4"6 Simo-
nian et al.7 point out that incorporating passive damping in an
active control design must be done so that the deficiencies of
one technology are compensated by the strengths of the other.
They propose an iterative scheme that uses modal strain en-
ergy analysis to determine the modal damping. A hybrid cost
function is used to determine the tradeoffs. Fowler et al.
implemented a variation of this method in a computer pro-
gram.8 Grandhi assumes proportional damping and uses a
computer program to minimize weight.9 Onoda and Watanabe
use a direct numerical optimization approach for design of an
optimal controller incorporated into a structure/controller
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simultaneous optimization scheme but do not specifically ad-
dress damping issues.10

None of the cited methods attempt closed-form simulta-
neous optimization of passive viscous damping and active
control, although Gibson11 does point out the need for it. In
an effort to improve design methods, a new method of simul-
taneous optimization is proposed.

Optimizing Viscous Damping and
Control Simultaneously

To determine an "optimum" for damping and control, one
must first select a suitable performance index. A common one
used in controls is the linear quadratic regulator (LQR) cost
functional.12

To optimize damping and control simultaneously, consider
a variation of the LQR cost function. Let v be a vector of
passive control forces in the system, and S its positive definite
weighting matrix. Then

and

= -(xTQx + uTRu + vTSv) dt

x = Ax + Bu + Bvv

(1)

(2)

The passive damping and associated stiffness coefficients have
been taken out of the term Ax, in which they normally reside,
and placed in a separate term Bvv. The passive forces are
directly analogous to the active control forces and are
weighted in the same manner.

We have specific reasons for weighting the passive forces
like the active control forces. When implementing a damping
design using viscous fluid dampers or viscoelastic solids, one
must take into account the temperature sensitivity of the
damping medium. Modest changes in temperature due to ab-
sorbed mechanical energy can dramatically alter the damping
properties of both fluids and solids. Hence we are motivated
to limit in some fashion the mechanical energy absorbed by
any given damper as well as limit the peak value of its damping
force. The quadratic damping term appearing in the perfor-
mance index, Eq. (1), serves this end rather nicely. One should
note that this quadratic damping term is reminiscent of the
Rayleigh dissipation function used in conjunction with energy
methods in classical dynamics.

654
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Assume v is of the form

(3)

where C contains the desired passive damping coefficients and
perhaps some stiffness coefficients. The matrix $ is chosen
such that C is diagonal. In some cases, the matrix $ can be
chosen to be invertible, as is the case for one of the example
problems later in the paper.

Using the method of Lagrange multipliers to append the
constraints to the performance index gives

J = [l/2(xTQx + uTRu + vTSv)
J r 0

- \l(x -Ax-Bu- Bvv) - Xj(v - dt (4)

Now jc, u, and v are taken to be independent, which implies C
is independent of these quantities also. By definition, the
vectors AI and X2 are independent of each other and of x, u,
v, and C. Hence, to minimize 7, take its variation and set it
equal to zero. The variation of J is

5J = [(xTQdx + uTRdu + vTSdv)
''0

- <5Xf(x - Ax - Bu - Bvv)

- \l(5x-Adx-Bdu -Bvdv)- 6Aj(v -

dt

Since initial and final conditions are specified,
ff
\fdx dt = \ldx | */{

o

Then dJ becomes

\{dx dt = - \ \{dx dt (5)
t0 J f 0

dJ = [(xTQ + Xf + \lA + XfC$)&c + (uTR +
J r 0

+ (v TS + Xf£v - X|)6v - d\l(x -Ax-Bu - Bvv)

- 6X2
r(v - C$x) + \%(5C)3>x] dt (6)

The independence of the six unknowns leads to the six
equations

x = Ax + Bu + Bvv

v = C3>x

u= -R-^^

0 = X! + A ̂  + Qx + $rCX2

(7)

(8)

(9)

(1.0)

(11)

(12)

(13)

Substituting Eqs. (9), (12), and (13) into Eqs. (7) and (10)
yields

(14)

(15)

X2 = 0

Equations (11) and (12) give

x = Ax - BR ~ 1BT \{ - BVS ~ 1B^

These two equations can be written as one matrix equation

A -BR~lBT-BvS-lBf] (x

Mj L-Q -AT (16)

This equation can be solved for x and Xi for given x(t0) and
x(tf). Now Eqs. (8) and (13) give

= - S ~ (17)

Since C is diagonal, the /th diagonal element of C (c/) can be
written as

(18)

where the subscript / denotes the /th element of the indicated
vector. Not only does the preceding relation indicate that C is
time varying, it also indicates that if any element of $Jt is zero
at any time, the corresponding c/ is infinity. Since it is desir-
able that the passive damping coefficients be constant (and
finite), we will attempt to find a solution of the form of the
standard LQR solution.

Minimizing the Cost Functional Error
For now, assume Xi is of the form Xi = Px. (We will see

later that this yields an optimal solution that contradicts the
requirement that C is diagonal.) This is the form of the stan-
dard LQR solution. Then, with X2 = 0, Eq. (10) becomes

0 = Px + Px + A TPx + Qx

whereas Eq. (11) becomes

Sv= - BfPx

or

Equivalently,

v = - S ~ lBfPx

C3>x= -

or

(19)

(20)

(21)

(22)

(23)

Substituting for Jc, u, and v in Eq. (19) gives

Px + P(Ax + Bu + Bvv) + A TPx + Qx = 0

Px + PAx + P[B( -R- lBTPx)

+ BV(-S~ lB?Px)] + A TPx + Qx = 0

[P + PA + A TP - P(BR ~1BT + BVS~ 1B?)P + Q]x = 0

which leads to the Riccati equation

P + PA + A TP - P(BR -1BT

Restricting attention to the steady-state solution, P = 0,
which is equivalent to letting //— oo (Ref. 12), leads to the
algebraic Riccati equation.

PA + A TP - P(BR ~ 1BT+BVS - (24)

If $ is invertible, from Eq. (23), C is determined by the
relation

C= - (25)
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where P satisfies the algebraic Riccati equation. This solution
for Cis in general not diagonal. As originally posed, however,
C must be a positive semidefinite diagonal matrix. This re-
quirement was not specifically addressed in the preceding
derivation. This constraint is normally not encountered in an
LQR problem. Consequently, there is no standard technique
for incorporating it. In general C, as computed from Eq. (25),
is fully populated, but initial numerical solutions indicate that
the diagonal terms of interest are significantly larger than the
off-diagonal terms. The assumption that the solution has the
form of the standard regulator (i.e., \i = Px) is what led us to
a nondiagonal C. Unlike the standard LQR problem, the
solution to the optimization problem posed by Eq. (1) and C
constrained positive definite diagonal is not given by a Riccati
equation, even when (/•—> oo. We will demonstrate later that the
solution to the present problem will, however, require an
iteration involving a Riccati equation similar to Eq. (24).

If the assumption that \i = Px is not made, a diagonal C
can be obtained, but it is time dependent as shown in Eq. (18).
In addition, the feedback gains for the active control forces u
are also time dependent. Since it is desirable to maintain
constant feedback gains, as well as constant damping coeffi-
cients, suboptimal solutions are sought with constant diagonal
C and constant active feedback gains that yield the lowest cost
functional.

A good estimate of C that is diagonal would be the diagonal
matrix that is the best least squares fit to Eq. (23). Equiva-
lently, minimize the Frobenius norm

(26)

where P is the solution of Eq. (24). (The Frobenius norm of a
matrix A is defined as the square root of the sum of the
squares of the elements of the matrix \\A \\F = [L5L4-y]1/2.) This
is a linear minimization problem and has a closed-form solu-
tion (see Appendix for derivation). If

W = -S~

the elements of C are

ctj = 0 for i

(27)

(28)

If m is the number of damper coefficients, and n is the length
of y, $ and W are m x n matrices. This solution also has the
added attraction of guaranteed positive values of c// (see Ap-
pendix).

Let us step back for a moment and examine the minimum
solution of Eq. (1) when C is chosen a priori as opposed to
simultaneously. The cost functional becomes

tf 1̂\*T(Q 3>TCSC3>)x + uTRu] dt

subject to

x = (A + BvC$)x + Bu

(29)

(30)

We see with C fixed in advance, the minimization is a standard
LQR problem with modified Q and A matrices. The minimum
/ is achieved by

u = -R~lBTPx (31)

where P (in the limit as */—-oo) is now the solution of

P(A + BVC$) + (A + BVCQ)TP - PBR ~ 1BTP

+ Q + $TCSC3> = 0 (32)

It can be shown12 that as /y—oo, the value of the cost
functional is

J = lim J(tf) =
•—

(33)

Therefore, if XQ is known, we can iterate on a diagonal C
[using Eq. (32) to determine P during each iteration] to mini-
mize J in Eq. (33). However, optimizing for a single fixed x0
may result in poor off design performance. In contrast, the
standard LQR problem does not require this iteration because
P is independent of x0, and hence results in inherently robust
performance. To improve the performance robustness, we will
consider solution techniques independent of JCG.

To get a measure of the difference between the value of J
that is achievable with an unconstrained C and the J achieved
with constrained C, note that

AJ = XQ = X<j(P - P)X0 = (34)

where P represents the unconstrained optimal solution and P
a constrained solution. Now P satisfies

PA + A TP -P(BR~1BT + BVS-1B?)P + Q=0 (35)

whereas P satisfies

P(A + BVC$) + (A + BVC$)TP - PBR ~ 1BTP

+ Q + 3>TCSC$ = 0 (36)

Subtracting Eq. (35) from Eq. (36),

APA + ATAP + APBVC$ + PBVC$ + (BVC3> + PBVC3>)TAP

+ (BVC3> + PBVC$)TP - AP(BR ~ 1BTP) - PBR ~ 1BTP

-AP(BR-1BT)AP + $TCSC3> + PBVS-1B?P = 0 (37)

This can be written in the form of a Riccati equation

AP(A -BR- 1BTP + BVC3>) + (A - BR ~ 1BTP

+ BVC$)TAP - AP(BR - {BT)AP + E = 0 (38)

where E = 3>TCSC3> + 3>TCB*P + PBVC$ + PBVS ~ 1B?P. This
Riccati equation determines AP, which in turn determines A/.
Note that (A - BR ~ 1BTP + 5VC3>) is stable. Therefore, if
E = 0, then AP = 0 is the only real symmetric solution to Eq.
(38). 13 Therefore, driving E as small as possible yields a small
AP and thus drives P to P. This is highly desirable because we
know that P (the unconstrained standard LQR solution) is
highly robust with respect to initial conditions.

Note that E can be written as

E = fP) + PBVS - l

+ PBVS ~ l

PBV)S

B?P)]T[S ~ V

= HTH (39)

where H = S ~ l/2(SC$ + B^P). Therefore, choosing C to
make 5C$ as close to - B^P as possible will make E small.
Note that \\HTH\\2 = \\H\\l* Thus choosing a C that minimizes
the two norm of H minimizes the two norm of E and drives
A7^0. This minimization can be accomplished using the
MATLAB routine FMINS. FMINS uses the Nelder-Mead sim-
plex search algorithm.14
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INITIALIZE C
(Eq. 28 or Arbitrary)

COMPUTE P
(Solve Eq. 30)

COMPUTE
||P|I2 (or Trace P)

UPDATE C
(Nelder-Mead)

Fig. 1 Iteration procedure.

The divergence formula is

div u d V - \ n - u dA (43)

Let Cf represent the unit vector in the direction of the */
coordinate. Then the unit vector normal to the surface of the
unit ball is

n

n = £*/e/
/= i

In the first integral in Eq. (42), n - u = x f . This implies that
u = XfCi. Therefore,

k Xjdiv u = i, —— = — = 1
k=\oxk dxi

Therefore, evaluation of the first integral in Eq. (42) is

x f d A = \ dV=V
\\X0\\ = 1 J |JC0I = 1

(44)

(45)

the volume of the unit ball.
In the second integral in Eq. (42), n • u = xfXj. This requires

u = Vifaej + XjCj). Then,

Notice how similar H is to the error term in Eq. (26). In
fact, minimizing the Frobenius norm of Eq. (26) gives the
same result as minimizing \\H\\F. The advantage of this
method over minimizing \\H\\2 is that it is guaranteed to return
positive damping coefficients and can be solved in closed form
(see Appendix).

Alternative / Optimization
Note that the combination of C and P that minimizes J [Eq.

(33)] is independent of the magnitude of the vector XQ. There-
fore, comparing solutions for Iljt0ll = 1 reflects the perfor-
mance over the entire space.

One alternative approach is to minimize the maximum value
of J for all 11*0 II = 1. This approach requires determining the
two norm of P, since

/= 1/2 < V2 IIX0II2IIP II2 = l/2 HP II2 (40)

In this method, iteration with respect to C is carried out until
IIP II2 is minimized. The flowchart in Fig. 1 outlines the itera-
tion procedure. This approach might be very conservative in
general, since the XQ that maximizes P may not be encountered
very often.

Another alternative approach is to minimize the average
value of /over the unit ball, IU0II = 1. Let XQ = [xiX2 • - - xn]T.
Since P is symmetric,

1
J = -XQ

2

1 "
- 2rf
2 / = i

(41)

and

\ ~ L*i * it* i '
11*011 = iV / = 1 ''

IX0I = 1
cL4

£P/7

dA
(42)

u =
"duk£ — -

k=\dxk

l .
= 0

Hence,

XfXj dA =0

(46)

(47)

The last integral in Eq. (42) is just the surface area of the unit
ball, but it can be expressed in terms of the volume. The
quantity n • u = 1. This requires that u = n. Thus,

,. A ^Wyt A ^A:div w = 2^ — = Irf — = woxk oxkI. 1 K I. \ "•

This gives

dA =
\\XQ\\

ndV=nV
\\XQ\\ = 1

Combining Eqs. (42), (45), (47), and (49),

j= — trP
2n

(48)

(49)

(50)

Hence, minimizing the trace of P minimizes the average value
of / over the unit ball Ilx0ll = 1, regardless of system order.
This is accomplished by iteration with respect to C (see Fig. 1).
A similar derivation of minimum average control energy is
given by Kalman et al.15

We have described four solution techniques that are inde-
pendent of initial conditions. In summary, the four solution
methods are:

1) min \H\p\ Closed-form solution based on finding a
diagonal C that minimizes the error in the cost with respect to
the Frobenius norm; see Eqs. (34-39).

2) min \\H\\2: Iterative solution technique based on finding
a diagonal C that minimizes the error in the cost with respect
to the two norm; see Eqs. (34-39).

3) min IIPII2: Iterative solution technique based on finding a
diagonal C that minimizes the maximum value of the cost; see
Eq. (40).

4) min (trace P): Iterative solution technique based on find-
ing a diagonal C that minimizes the average value of the cost;
see Eqs. (41-50).
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Table 1 Damping coefficients
____for 2-DOF system____

Case c

Minimizing the trace of P for Example 1 gave a diagonal C of

XQ fixed
min IIP II2
min tr P
min \\H\\p
min \\H\\2

0.79
0.40
0.46
0.71
0.71

Example Problem 1
Consider a spring-mass-damper system whose equation of

motion is given by the scalar equation

z + cz + (0.5 + = - u (51)

where AA: and c are the passive control design parameters.
Letting xl = z'9 x2 = z, then

x =
0

x = Ax+Bu + BvC<bx

Let the weighting matrices be

R = l,
FlOOO

(52)

(53)

(54)

The weight on AA: is chosen large to assure negligible extra
passive stiffness. This optimal unconstrained C [i.e., the solu-
tion of Eq. (23)] for this problem is

0 0
0.50 0.71

(55)

If we pick XQ = [0 l]r and iterate on diagonal C to minimize
Eq. (33) subject to Eq. (32), we get

C =
0 0
0 0.79

J = 0.7860

(56)

(57)

where the / for the optimal unconstrained C and XQ = [0 l]r

would be 0.7069.
For the two-degree-of-freedom case, 11*0II = 1 can be repre-

sented by a single parameter 6 where XQ = [cos 8 sin 6]T. The
off design results for the optimal unconstrained C is shown as
a solid line with circles in Fig. 2. The results for diagonal C
minimizing J for XQ = [0 \]T are shown also. Also included for
comparison is the result for purely active damping (i.e.,
C = 0). (The design results are the results at 0 = ir/2.)

Notice that the system optimized at XQ = [0 l]r does not
always outperform the pure active damping case for off design
XQ. Clearly, optimizing for a fixed XQ will not always be robust
(i.e., insensitive to changes in XQ). Let's now examine the
alternative suboptimal solutions that are independent of XQ.
Though not strictly optimal, these solutions are much more
robust to off design XQ.

For the two-degree-of-freedom problem, minimizing IIPII2
resulted in a diagonal C of

C =
0 0
0 0.40

(58)

The result is plotted in Fig. 2. The graph shows this solution to
be much more robust than optimizing for a given XQ. All other
solutions will have some values of J above the maximum of
this one.

0.46 (59)

These results are also shown in Fig. 2. Although this graph
does have points above the one for min IIPII2, the average
value of J is lower for this solution than for any other. The
min \\H\\2 and the min \\H\\F solutions are not shown on Fig.
1. They are very close to the c = 0.79 solution.

Note that both the solution minimizing the average value of
the cost functional and the one minimizing the maximum
value of the cost functional outperform the solution using
active control only. Hence the simultaneous design of active
vibration control and passive damping is superior to active
control alone.

Table 1 summarizes various results for the two-degree-of-
freedom system. For this example, the results for the min
\\H\\2 and min \\H\\F cases are the same to two decimal places,
but in general the results will be different. Although the damp-
ing coefficients for the min \\H\\2 and min \\H]\F cases are
closer to the fixed XQ case, they nonetheless serve as decent first
guesses for the min IIPII2 and the min (tr P) cases. The impor-
tance of this in higher order systems will become evident in
Example 2.

Example Problem 2
Consider the two-dimensional aluminum truss in Fig. 3. The

finite element model equations of motion can be written in the
state-space form

x = Ax + Bu + BvC$x (60)

2

1.8

1.6

I-4 ,

1.2

1

0.8

0.6

0.4

0.2

0

c = 0.79 -*—
C = 0 —-

min (trace P)
min ||P||2 ——

unconstrained C -®—

0 0.5 1 1.5 2 2.5
e

Fig. 2 Performance index vs initial conditions.

Fig. 3 Example problem 2 truss structure.
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Table 2 Damping coefficients and CPU times for 14-DQF truss

min \\H\\F

11,
7,
7,
4,
4,

.7599

.1387

.8167

.8881

.6872
2 s

min \\H\\2
17.9135
37.4876
9.1892
6.7594
5.9470

30s

mino \\H\\2
17.9384

-1.9959
9.1836
6.7571
5.9454

27 s

min tr P
10.7839
6.6476
7.6351
6.4359
6.3189
17 min

mino tr P
10.7837
6.6476
7.6351
6.4358
6.3185
33 min

min \\P\\2
18.7650
10.0413
7.0617
7.4100
9.0092
23 min

mino HP H 2
18.7657
10.0411
7.0617
7.4101
9.0092
102 min

Table 3 Damping factors and natural frequencies for 14-DOF truss

Undamped
poles, 104

1.8725i
1.526H
1.4637i
1.2525i
1.2246i
1.1299i
1.1227i
0.8670i
0.7845i
0.6004i
0.4408i
0.1750i
0.2687i
0.2400i

min

r
0.1944
0.1313
0.0811
0.1509
0.1214
0.0206
0.0652
0.0564
0.0472
0.0993
0.1204
0.1083
0.0496
0.0446

\\H\\p

WAT,
104 rad/s

1.8477
1.4845
1.4609
1.2276
1.2238
1.1345
1.1388
0.8788
0.7902
0.6063
0.4465
0.1768
0.2689
0.2404

min

r
0.2584
0.1347
0.0884
0.1655
0.1185
0.0229
0.0703
0.0625
0.0488
0.0959
0.1144
0.1073
0.0487
0.0446

trP

^n,
104 rad/s

1.8285
1.4935
1.4482
1.2247
1.2358
1.1370
1.1378
0.8836
0.7912
0.6062
0.4458
0.1767
0.2689
0.2404

min

r
0.3497
0.1812
0.0961
0.2108
0.1764
0.0929
0.0256
0.0745
0.0577
0.1038
0.1684
0.1162
0.0463
0.0594

IIPII2

CO/j,
104 rad/s

1.8008
.4903
.4316
.2076
.1995
.1738
.1401

0.8991
0.7944
0.6025
0.4521
0.1780
0.2407
0.2691

The state-space vector x is 28 x 1. There are four control
inputs and five damping coefficients, therefore u is 4 x 1 and
C is 5 x 5. Therefore, A is 28 x 28, B is 28 x 4, Bv is 28 x 5,
and $ is 5 x 28. The parameters of the system are

EA = 1.822 x 107 N (4.095 x 106 Ib)

PA = 0.6964 N-s2/m2 (1.010 x 10 ~ 4 Ib-s2/in.4)

The lengths of the horizontal and vertical elements, and of the
two elements with dampers c4 and c5 are 0.6096 m (2.0 ft).
Thus, the diagonal elements with dampers c1? c2, and c3 are
0.8621 m (2.828 ft) in length. The state weighting matrix Q
was chosen such that xTQx equalled the total mechanical
energy in the system. Thus Q was formed using the mass and
stiffness matrices, M and K, whereas the passive damping
weighting matrix S was chosen to be 10 ~ 4 x identity, and the
control weighting matrix R was chosen to be 10 ~ 3 x identity

K 0
0 M

(61)

The resulting damping coefficients for the different solution
techniques are given in Table 2. At the bottom of Table 2 are
the approximate computation times on a VAX 6420. The
solution techniques were run with simple MATLAB routines,
using default tolerances in the minimization routines. The
minimization algorithm utilized is the Nelder-Mead simplex
method.14 The min \\H\\F solution was used as an initial guess
for the other solutions. (The CPU time for the min \\H\\F
solution is included for completeness, but since it is a closed-
form solution, it can be computed before numerical minimiza-
tions are performed.)

Shown in Table 3 are the open-loop poles of the system (no
active or passive control) and the closed-loop damping factors
and natural frequencies using the min (tr P) and min IIPII2
solution methods. The zero subscript on min indicates that an
initial guess of C = 0 was used. The other cases used the min
\\H\\p solution as an initial guess. This significantly decreased

the computation time, except in the min \\H\\2 case. Since the
min \\H II2 case gave different answers for the different initial
guesses, the relative CPU times have little meaning. In fact,
the negative damping coefficient returned by the zero initial
guess indicates this is not a realistic solution, and so it must be
discarded. Also, the significant difference in c2 from the other
solutions for the Frobenius norm initial guess implies that this
solution may not be very realistic either. Recall that the min
IIH \\F solution will always return positive damping coefficients
and is the minimum least squares fit to the unconstrained
solution (see Appendix). If one wishes to guarantee positive
solutions for the iterative techniques, the constraint that the
damping coefficients must be positive can be incorporated
into their program codes.

The results in Table 2 clearly demonstrate that if one
chooses not spend the additional computer time to optimize
the dampers that the inexpensive min \\H\\F solution is a
reasonably close estimate. For very large systems this solution
may be the only affordable alternative. Figure 4 shows the
gain and phase plots of the structure's tip response in the
vertical direction to a vertical input near the base of the
structure, input u4. The three solutions shown [min \\H\\F,
\\P\\2, and min, (tr P)] give almost identical responses. This
supports the conclusion that the min \\H\\F solution is a rea-
sonable estimate. The closed-loop damping factors for the min
\\H\\F, IIPII2 , and min (tr P) solutions are shown in Table 3.

Since we are unable to show a two-dimensional plot of /
over the unit ball as we did in Example 1, we need another
method of comparing the solutions. Recall from Eq. (34) that
the difference in J between two different solutions can be
given by

A/ = (62)

where P! and P2 are two different solutions. If the matrix
(Pi - P2) is positive definite, then A7>0 for all XQ. Hence, P2
would give a lower value of J than P! for all XQ. As shown in
Table 4, the min \\H\\F solution (PF), the min (tr P) solution
(Ptr), and the min IIP II2 solution (P2) give lower values of J for
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all xQ than the solution using only active damping (Pc0). Only
14 eigenvalues are shown as the second 14 were essentially
zero. Table 4 also shows that Ptr gives a lower value of /than
P2 in seven directions, and a higher value of J in the other
seven directions. Since most of the positive eigenvalues of
(P2 - PIT) are greater in magnitude than the negative eigenval-
ues, it can be argued that Ptr is a better overall solution than P2.

The cost functional of Eq. (1) treats the passive damping
forces as if they were similar to the active damping forces. It
can be argued that passive damping is an initial one-time cost
item and ought to be weighed as such. This leads to a cost
functional of the form

Table 4 Eigenvalues of Delta P for 14-DOF truss

1
= -cTSc 1

~(xTQx + uTRu) dt

subject to

x = (A + BvC3>)x + Bu

(63)

(64)

where c is a vector of the passive damping parameters and C
is a diagonal matrix with the elements of c on its main diago-
nal. Regardless of the values of c, the minimum of the integral
term is given by Yix^Pxo where P satisfies

P(A + BVC$) + (A + BVC$)TP - PBR ~1BTP + G = 0 (65)

To minimize the maximum value of / we need to minimize

J=Y2\ JtoPJto + cTSc | < i/2(llx0ll2llPll2 + cTSc)

c^c) (66)

cTScdA

for 11*0 II = 1, where P is found by solving Eq. (65).
To minimize the average value of J we need to minimize

(67)

dA
\\X0\\ = 1

dA
\\X0\\ = 1

-50 -

-100 -

Gain (db)

-150 -

Phase

-1000 -

-1400
105

Pd)-PF PcO-Ptr PcO-P2 P2~Ptr

8064.7
2920.9
2797.3
2569.2
1982.6
1165.3
729.2
609.5
526.2
449.7
140.6
83.3
19.3
14.3

8025.3
2921.3
2802.1
2579.1
2025.4
1173.5
736.3
618.5
541.2
459.2
139.1
80.1
18.7
15.3

7950.6
2856.7
2785.9
1565.1
2025.3
1101.3
727.5
599.2
550.3
462.0
145.6
102.4
23.3
19.8

121.8
87.5

-47.1
59.2
32.7

-26.5
16.9

-21.3
9.6
7.6

-8.0
-5.7
-4.5
-1.9

/ = — trP+-cTSc (68)

where P is again given by Eq. (65).

Conclusions
Simultaneous design to determine optimal blending of pas-

sive damping and active vibration control has been consid-
ered. Four techniques based on modified versions of the stan-
dard linear quadratic regulator cost functional of optimal
control theory were developed. Two of the techniques (one of
which is closed form) attempt to minimize the error in the cost
due to using viscous dampers rather than a true active control
force. The closed-form solution can be used as a starting
estimate for the damping parameters in two additional itera-
tive techniques, one that minimizes the average energy over
the range of possible initial conditions and one that minimizes
the maximum possible energy.

Appendix
In this Appendix we derive the solution to the diagonal C

that minimizes the Frobenius norm of Eq. (25). Let X be the
space of vectors with four elements and let Y be the space of
4 x 4 matrices. Define an operator A :X^ Y by

y=A(x) =

*! 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

(Al)

where x £ X. It is easily verified that A(x + aw) = A(x\)
+ OLA (w) for any scalar a. and any x, w € X, so A is linear.

Define a functional on Y by

(y,z)= (A2)

Since this functional satisfies the four requirements of an
inner product,

( y , z ) = ( z , y )

> z) = f a , z) + (y2, z)

=0

define the functional in Eq. (A2) to be the inner product on
Y. Then the norm on Y is given by

Fig. 4 Bode plot for example 2.

[ 4 T V S

=\ E ̂L/J - I J
(A3)
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Notice that this is the Frobenius norm for 4 x 4 matrices.
The conjugate operator A*:Y-+X is found from the rela-

tionship

(A4)

The subscripts X and Y denote the spaces in which the inner
product is taken. Since

(Ax,y)Y = £ (Ax)^ = EXM = (x,A*y)x (A5)

the conjugate operator is given by

A*y = (A6)

The solution that yields the smallest error in the Frobenius
norm is given by (A *A) - 1A *y if (A *A) -1 exists.16 Find A *A

A*Ax=A*

~xi 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

= x (A7)

So A*A is the identity operator and its inverse is also the
identity operator. Hence the solution that minimizes the
Frobenius norm is

x=A*y (A8)

In other words, x is the diagonal of y.
Using the same procedure just outlined, it can be shown that

the diagonal C that minimizes the Frobenius norm IIC$ —y \\F
is given by Eq. (28).

In the case where C contains only viscous damping coeffi-
cients (no spring stiffnesses),

Let

> = p

(A9)

(A10)

Since Mis positive definite and P is positive semidefinite, P is
positive semidefinite. Assuming P has n independent eigenvec-
tors, P=EAET where E is the orthonormal matrix of eigen-
vectors and A is the diagonal matrix of eigenvalues. Then
y = - S ' l$EAET. Defining 5/ as the /th element of the diago-
nal of 5, \j as they th eigenvalue, €j as they th eigenvector, and
0/ as the /th row of $, the /th element of c is given by

1

7=1

/= 1
(All)

Since 5/>0 and X,>0, therefore c/>0. Thus, the min \\H\\F
solution always returns physically implementable solutions.
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